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Adaptive multi-point model-order reduction is a well established methodology for computing fast frequency sweeps of finite-element
models. However, in the case of electrically large structures, generating the reduced-order system is computationally expensive, because
both the size of the finite-element model and the number of expansion points become large. Thus, a great number of independent
large-scale systems of linear equations must be solved by iterative methods. To alleviate this problem, the present paper proposes to
employ the reduced-order system already available at a given adaptive step for constructing an efficient two-level preconditioner. A
numerical example demonstrates the benefits of the suggested approach.

Index Terms—Reduced-order systems, finite-element analysis, iterative methods, phased arrays.

I. Introduction

THE FINITE-ELEMENT (FE) method is commonly used
for simulating electromagnetic structures in the frequency

domain. However, the solution process becomes expensive
when the model domain is electrically large. In addition to
the large volume to be discretized, extra h refinement or p
enrichment becomes necessary to counter numerical dispersion,
which increases the dimension of the FE system even more.
When direct solvers are no longer applicable because of their
high computational complexity, one must resort to iterative
techniques. For these, the availability of efficient precondition-
ers is of utmost importance. For electrically large domains,
non-overlapping domain decomposition (DD) methods are very
appealing [1]–[3]. When a single frequency does not suffice
but broadband analysis is required, multi-point methods of
model-order reduction (MOR) are much more powerful than
conventional FE analysis. The general idea is to generate a low-
dimensional approximation space from well-chosen snapshots
of the solution manifold. State-of-the-art MOR approaches
place expansion points adaptively, based on some a posteriori
error indicator [4]. In the case of electrically large structures,
constructing the MOR basis is computationally expensive,
because the number of expansion points tends to be large,
and each of them requires one iterative solution of the large-
scale FE system. We here propose to add an extra correction
step inside the Krylov iteration. In contrast to Krylov recycling
[5], it is based on the MOR basis available at the respective
adaptive step. Thus the quality of the preconditioner and, in
consequence, the number of Krylov iterations improve greatly
during the process of MOR generation.

II. Finite-Element-Domain-Decomposition Formulation

We write E for the electric field strength, k0 for the
free-space wavenumber, µr for the relative magnetic per-
meability, γΓ for the tangential trace map, and πΓ for the
tangential component trace map, respectively. We consider

a domain Ω ⊂ R3 and, for simplicity, its decomposition
into Ns = 2 non-overlapping subdomains such that Ω =

Ω1
⋃

Ω2, Ω1
⋂

Ω2 = ∅. To render the decomposed boundary
value problem (BVP) equivalent to the original one, addi-
tional transmission-conditions (TCs) on the interface Γ12 =

∂Ω1
⋂
∂Ω2 are required. We here consider a TC with two

transverse derivatives of second order [2],

Γ(Ei) = γΓ(µ−1
ri ∇ × Ei) + απΓ(Ei) + β∇Γ × ∇Γ × πΓ(Ei)

+ γ∇Γ∇Γ · γΓ(µ−1
ri ∇ × Ei) for i ∈ {1, 2}, (1)

wherein α, β, γ ∈ C are frequency- and material-dependent
parameters. The resulting FE-DD system [2] is of the form(

A1(k0, ξ) C12(k0, ξ)
C21(k0, ξ) A2(k0, ξ)

) (
x1(k0)
x2(k0)

)
=

(
b1(k0)
b2(k0)

)
, (2)

with ξ = (α, β, γ),Ai ∈ C
Ni×Ni , and Ci j ∈ C

Ni×N j , with i, j ∈
{1, 2}. The vectors xi contain Ni FE degrees of freedom for the
electric field inside the sub-domain Ωi as well as the auxiliary
variables on the interface Γ12.

III. Reduced-OrderModel
As a prerequisite for projection-based MOR, the FE-DD

system (2) is rewritten in affinely parametrized form with
respect to k0,(∑I

i=1
φi(k0)Âi

)
x̂(k0) =

(∑J

j=1
θ j(k0)b̂ j

)
, (3)

y(k0) =
(∑J

j=1
η j(k0)b̂T

j

)
x̂(k0), (4)

with wavenumber-dependent functions φi, θ j, η j : R → C and
block matrices and vectors defined as

Âi =

[
A1,i C12,i
C21,i A2,i

]
∈ C(N1+N2)×(N1+N2), (5a)

x̂(k0) =

[
x1(k0)
x2(k0)

]
∈ C(N1+N2), (5b)

b̂i =

[
b1,i
b2,i

]
∈ C(N1+N2). (5c)



Table I: Computational Data∗

Model ROM FE-DD FE-DD
Dimension 16 8 · 106 8 · 106

Type of preconditioner - M−1 PAD
ROM construction (h) - - 6.3 2.5
ROM evaluation (s) 5 · 10−3 - -
∗ Matlab prototype code on Intel Core i5-4570 CPU @ 3.2 GHz.

The multi-point reduced-order model (ROM) is built from the
FE solutions x(ki

0) of (3) at the sampling points ki
0, . . . , k

M
0 ,

selected adaptively by a greedy sampling procedure [4]. Thus,
ROM construction requires the solution of the large-scale FE-
DD system (3) at each parameter point. Since (3) is solved
iteratively, ROM construction time is determined mainly by
the convergence behavior of the linear solver.

To improve solver convergence, we propose to add an extra
correction step inside the Krylov iteration: Let VA denote the
approximation space spanned by the snapshots x(ki

0), i = 1. . . A.
The (A+1)-th basis vector x(kA+1

0 ) is calculated with the help
of an adaptive two-level preconditioner [6], given by

PAD = M−1
(
I − AVAE−1V∗A

)
+ VAE−1V∗A, 1 ≤ A ≤ M, (6)

E = V∗AAVA, (7)

range (VA) = span
{
x(ki

0)
}
, i = 1 . . . A, A ≤ M, (8)

wherein VAE−1VT
A acts as a coarse-space correction. The

operator M−1 describes a block Gauss-Seidel preconditioner
containing the lower triangular part of the system matrix (2).
After computing the projection space V M given by

V M = span
{
x(ki

0)
}
, i = 1 . . . M, M � N1 + N2, (9)

Galerkin projection leads to a ROM of the form(∑I

i=1
φi(k0)Ãi

)
x̃(k0) =

∑J

j=1
θ j(k0)b̃ j, (10)

ỹ(k0) =
(∑J

j=1
η j(k0)b̃T

j

)
x̃(k0), (11)

wherein the reduced matrices and vectors are defined as

Ãi = V∗MÂiVM ∈ C
M×M , (12)

b̃i = V∗Mb̂i ∈ C
M , (13)

range (VM) = V M , V ∈ CN×M . (14)

IV. Numerical Example

We consider an array consisting of 20 × 20 patch antennas
in the frequency band f ∈ [8, 12] GHz. The geometry of a
single element is shown in Fig. 1. The FE system (3) is solved
by the restarted GMRES(30) iterative method with stopping
criterion δ = 10−6. The termination criterion for the ROM is
σ = 10−6. Table I gives computational data: Compared to the
standard one-level preconditioner M−1, the proposed two-level
preconditioner PAD reduces ROM generation time from 6.3h
to 2.5h. Figs. 1 and 2 illustrate the dependence of the iteration
count on the dimension A of the projection space VA. Fig. 3
presents the magnitude of the reflected wave versus frequency
for a corner and a central radiator, respectively, as well as the
directive gain at f = 10.36 GHz and f = 12 GHz.
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Figure 1: Relative residual of GMRES(30) method versus
iteration count, using PAD. Parameter: ROM dimension A.
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Figure 2: Iteration count versus ROM dimension VA for the
standard one-level and the proposed two-level preconditioners.
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(a) Magn. of reflected wave versus fre-
quency. Parameter: antenna location.
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(b) Directive gain for principal plane
φ = π

2 . Parameter: frequency.

Figure 3: Antenna parameters obtained from ROM.
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